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J. Phys. A:  Math. Gen. 14 (1981) 2741-2757. Printed in Great Britain 

Finite size scaling and crossover phenomena: the X Y  chain 
in a transverse field at zero temperature 

R R dos Santost and R B Stinchcombe 
Department of Theoretical Physics, 1 Keble Road, Oxford, OX1 3NP, UK 

Received 28 January 1981 

Abstract. The scaling theory of finite size effects in the limiting bulk behaviour is extended 
to treat crossover phenomena. The method is used to study quantum critical phenomena in 
the X Y  chain in a transverse field at zero temperature, through the scaling of the 
longitudinal susceptibilities and of the energy gaps between the ground and two first excited 
states. As expected, no abrupt change in critical exponents is observed for small anisotropy, 
because of the finiteness of the system, but the limiting isotropic and anisotropic regions 
display quite distinct critical behaviour, in good agreement with known results. Another 
interesting result obtained is that the two energy gaps examined vanish at the critical line 
with the same critical exponent. 

1. Introduction 

The understanding of critical phenomena has developed a great deal during the last two 
decades, in particular with the ideas of universality (Kadanoff 1975) and the renor- 
malisation group (Wilson and Kogut 1974, Wallace and Zia 1978). 

The universality hypothesis states that systems exhibiting critical behaviour can be 
cast into universality classes, determined by the lattice and order parameter dimen- 
sionalities only, provided the interactions are short ranged (Kadanoff 1975). In this 
way, if the dimensionality of the order parameter changes due to, say, exchange 
anisotropy, the critical behaviour crosses over to a different one. Crossover phenomena 
have been investigated with the aid of scaling functions (Riedel and Wegner 1969, 
Pfeuty et al 1974) as well as with the renormalisation group (RG) (see Aharony 1976). 

On the other hand, the ideas of scaling have been used to investigate the asymptotic 
behaviour of systems of large but finite sizes and thin films, with the finite size scaling 
(FSS) hypothesis (Fisher 1971, Suzuki 1977), which can be though of as a theory of 
crossover between finite and infinite size behaviours. The central assumption behind 
this hypothesis is the existence of a single diverging correlation length when the system 
becomes infinitely large (Fisher 1971). As a consequence, the class of systems 
described by the FSS hypothesis as it stands (Fisher 1971) is restricted to those with a 
single diverging correlation length, although there may be more than one relevant 
variable (in the RG sense), such as in an Ising magnet with a longitudinal field. The FSS 

treatment of crossover phenomena with more than one diverging correlation length is 
therefore ruled out. 

f On leave from Departamento de Fisica, Universidade Federal de Alagoas, Maceio, Brazil. 
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The purpose of this work is to extend the original FSS theory (Fisher 1971) to treat 
crossover phenomena and to illustrate its use by treating a problem in quantum critical 
phenomena. 

To this end § §  2 and 3 briefly review finite size (Fisher 1971) and crossover (Pfeuty et 
a1 1974) scaling theories, respectively. In § 4 we introduce the extended finite size 
scaling (EFSS) ansatz, and analyse its properties. In § 5 we apply these ideas to the 
anisotropy exchange in the one-dimensional X Y  model with a transverse field at zero 
temperature. Section 6 closes this paper with discussions of the scope and limitations of 
the EFSS hypothesis. 

2. Finite size scaling 

FSS theory was developed by Fisher and co-workers (see Fisher 1971) in order to study 
the approach to criticality for systems of large but finite extension in one or more spatial 
dimension. 

Consider for simplicity a d-dimensional hypercubic lattice with n spins along each 
one of its directions, with nearest-neighbour coupling g. When n is kept finite there are 
two competing characteristic lengths for this system, namely the size n and the limiting 
(i.e. n + 03) correlation length 5 supposed to behave as 

5 - lg - g r  (2.1) 
for g near the critical value g,. In this way, if n is finite and g -- g,, order cannot build up 
beyond distances of the order n :  the limiting critical behaviour is inhibited. When 
n + 03, on the other hand, order can have infinite range. 

Based on these observations, the asymptotic behaviour of a quantity Xn (such as 
susceptibility, specific heat or the correlation length), calculated for a system of (large) 
size n and for g near g,, is given by the FSS hypothesis (Fisher 1971) 

X n k )  = n”/”Q(y) (2.2) 

y = n / [ .  (2.3) 

lim Xn ( g )  - Ig - g J ”  (2.4) 

where 

x is the exponent characterising the limiting behaviour of Xn, i.e. 

n+a3 

for g near g,, and Q ( y )  is the finite size scalingfunction with the properties (Fisher 1971) 

constant for y + O ,  
for y + 00. 

Q ( Y ) - {  y - x / u  (2.5) 

As discussed by Fisher (1971), one might prefer to scale with the variable 

[ (g  - gc(n))/gc(0O)l p n 1 / ”  (2 * 6) 
which introduces the pseudo-critical coupling gc(n) as the point at which X,(g) has a 
maximum (rounded-off singularity). Also, if we allow the system to be actually infinite 
in d‘< d dimensions but of finite size n in the remaining ones, then gc(n)  is an actual 
critical point, characterising &-dimensional critical behaviour. The use of jl allows the 
asymptotic behaviour of gc(n)  to be determined, unlike y which predicts a special 
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dependence on n for gc(n) (Fisher 1971). Provided we are not interested in the actual 
n-dependence of the pseudo-critical coupling, we can use the unshifted reduced 
variable y .  

The FSS hypothesis, as given by (2.2) with (2.3) or (2.6), has been confirmed by 
several calculations on Ising and spherical models (reviewed by Fisher (1971)), on the 
transverse Ising model at zero temperature (Hamer and Barber 1981, dos Santos 1980) 
and on the isotropic Heisenberg model (Ritchie and Fisher 1973). 

The assumption of a single relevant correlation length rules out any possibility of the 
hypothesis (2.2) describing crossover phenomena, since these are usually characterised 
by the existence of more than one diverging correlation length, as discussed in the next 
section. 

3. Crossover phenomena 

For the sake of simplicity let us restrict ourselves to spin Hamiltonians of the type 

where the subscripts I and A stand for isotropic and anisotropic respectively, g is a 
coupling constant and 7 measures the anisotropy and may be assumed to vary between 
0 and 1. Let us further assume that the system described by (3.1) becomes critical as one 
crosses a critical line gc(T). 

In the cases where Ha has a lower symmetry than HI, it follows from the universality 
hypothesis that the isotropic critical behaviour crosses over to the anisotropic critical 
behaviour even for a small degree of anisotropy. This means that for fixed 7 a 
thermodynamic quantity X(g, 7) (e.g. susceptibility, specific heat, magnetisation, 
correlation length, etc) behaves like 

for 7 = 0, 
for 7 > O ,  (3.2) 

for (g - gc(q)l small enough, where x and x o  are in general different. 

assumed that the quantity X above can be given by 
Riedel and Wegner (1969) introduced a crossover scaling theory in which they 

X(g, 7 )  = i-"OF(q/i') (3.3) 

i = (g - gc(v))/gc(O) (3.4) 

where 

is the shifted reduced coupling, q5 is the crossover exponent and the function F ( z )  has 
the properties 

constant for z << 1, 
for z >> 1. (3.5) 

The region z - 1 is called the crossover region in the sense that for g 4 g", where 

g x = g c ( d + A 7 1 / d  (3.6) 

and A is a constant, the effects of anisotropy begin to dominate the isotropic behaviour. 
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An extended scaling theory was discussed by Pfeuty et a1 (1974) in which the above 
mentioned quantity X scales like 

X(g, 7)  = f-*OF0(77/t4) (3.7) 

where we note the appearance of the reduced coupling 

t = (g - gc(O))/gc(O) (3.8) 

While the form (3.3) leaves open the question about the shift exponent I), defined 

(3.9) 

for small 7, the extended scaling form (3.7) necessarily implies I) = q5 (Pfeuty et a1 
1974). The same point, with 7 replaced by l / n  where iz is the size of a finite system, 
appears in conjunction with the FSS hypothesis (Fisher 1971). 

instead of the shifted reduced coupling (3.4). 

through 

gc(7) - gc!O)(l + wl’? 

The asymptotic behaviour of Fo(z)  is now given by (Pfeuty et al 1974) 

(3.10) 

where zc is related to gc(q). 

to show that it behaves like 
If one takes the derivative of X as given by (3.7) with respect to 7 at 7 = 0, it is easy 

ax/aT/lvl=o - t--+) (3.11) 

so that the logarithmic derivative of X behaves like 

8/87 In x / , , = ~  - t-+ (3.12) 

which may be used to calculate the crossover exponent q5 (Pfeuty et a1 1974). 
The EFFS hypothesis must allow for the possibility of more than one correlation 

length diverging. In particular, for the anisotropy crossover we can define two 
correlation lengths 61 and 52 in such a way that for 7 = 0 both t1 and t2 diverge at gc(0), 
whereas for 7 > 0 only one, say (2, diverges at gc(q), the other one remaining finite. We 
may write, using the extended scaling form, 

51 = t - ” ° F l ( ~ / t * )  (3.13) 

and 

6 2  = t-”OF2(7/t4) 

where F l ( z )  and F 2 ( z )  have the asymptotic forms 

as z + 0, 
as z + z,, 

(3.14) 

(3.15) 

where A and B are constants and 

(3.16) 
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4. The extended finite size scaling hypothesis 

Let us now consider a d-dimensional hypercube of finite extent n in all its dimensions. 
If we want to allow for the possibility of crossover phenomena to occur in the 

thermodynamic limit, we must introduce a second variable into the usual FSS hypo- 
thesis. The discussion in the previous section then suggests that for a finite system it is 
the competition between n/& and n/& for fixed g and 7 that will determine which 
critical behaviour will occur when we take the thermodynamic limit. 

Thus, the thermodynamic quantity X(g, T), whose critical behaviour in the thermo- 
dynamic limit was discussed in Q 3, is assumed to behave for a system with finite (but 
large) size n as 

Xn(g, 7) = n"Q(n/S1, n/&) (4.1) 

where w is a constant to be determined, and Q ( u ,  U )  is the extended finite size scaling 
function. 

There are some conditions to be imposed on the asymptotic behaviour of Q ( u ,  U). 
Firstly, for fixed g and 7 such that g is near g,(T) we must reproduce the crossover 
scaling form (3.7) when n + 03. For this we may assume that 

in order to cancel any n-dependence, with Cp. being some function of y = u / v  = 
Further, with equations (3.13) and (3.14) we can write (4.2) as 

(4.3) 

where 

so that 

X(g, 7) = lim Xn(g, 7) = tCWYnF(z). 
n-m 

(4.5) 

Comparing (4.5) with (3.7), we obtain 

w = xo/u'o. (4.6) 

The second requirement upon Q concerns the recovery of the usual FSS ansatz for 
fixed 77. Thus, for finite n and fixed 77 = 0, ( 1  = &, so that 

Xn(g)  = n " " / " " ~ ( n / 5 ~ )  (4.7) 
where R ( n / & )  = Q(n/&, n/&). On the other hand, for finite n and fixed 77 > 0 we must 
assume that for g sufficiently close to gJ7) the function Q is separable, i.e. 

Q ( u ,  U) - S ( u ) T ( o ) ,  (4.8) 

in order to preserve the n-dependence and recover the usual FSS ansatz, with S and T 
being scaling functions of their variables. Further, as for 77 > O  is a well behaved 
function of 77 (cf equations (3.13) and (3.15)) we may write U - n f ( 7 )  and we may expect 

(4.9) S ( u )  - U' - [ n f ( ~ ) I "  

to leading order in n, with E to be determined. 
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(4.10) 

(4.11) 

to be consistent with the usual FSS hypothesis. 
It is worth stressing that equation (4.9) is only valid for n 3 &(g, q), which means 

that the expected discontinuity at q = 0 in the n-exponent only takes place as n + 00. 

For n < &(g, q) near the unstable critical point (gc(0)) the system behaves only slightly 
differently. 

The simplest test of these ideas is to plot In X,,[g,(q)] against In n for various 7 and 
examine the trend of the slopes of these curves for different values of 7. Moreover, we 
can define successive estimates (Ln (q), for the n-exponent in the EFSS hypothesis as the 
slope of the straight line joining In Xfl+l(gc(q), q )  to In X,(g,(q), q): 

(4.12) 

(4.13) 

(4.14) 

The ratio 4 / v o  can also be estimated by a similar procedure: taking the derivative of 

ax,,/aqll=O= nl+Xo’uotYo-d Z ( n /  t-”O) (4.15) 

X,, with respect to q at q = 0 and using (3.11) for d ( ~ / a q 1 ~ = 0 ,  we obtain 

where 2 is some function of the scaling variable ntYo, which implies 

d(ln ~ , ) / a 7 1 , , = ~  - nt”O-’Y(n/t-”o) (4.16) 

where we use the fact that for 7 = 0 

= (2 = t-0. (4.17) 

The function Y(uo), with uo = n/& for q = 0 (cf equations (3.16) and (4.7)), has the 
properties 

lim y ( u 0 )  - U;’ 
uo+m 

in order to cancel the residual n-dependence and 

lim y ( u 0 )  - U $ / ” O - ’  
uo-0 

(4.18) 

(4.19) 

in order to avoid the possibility of singular behaviour for finite n as t-3 0. With (4.19) 
we have from (4.16) 

(4.20) 

so that the ratio q5/v0 is given as the slope of a log-log plot of the logarithmic derivative 
of X with respect to q at q = 0 against n. 
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Another test of the scaling hypothesis presented here is to plot n-”’”Xn[g,(r])] 
against r] which, according to equation (4.10), should be independent of n away from 
the crossover region. 

In the following section we apply these ideas to anisotropy crossover in the 
one-dimensional transverse X Y  model at zero temperature. 

5. The anisotropy crossover in the one-dimensional XY model in a transverse field 
at zero temperature 

The simplest system exhibiting crossover that is amenable to test the EFSS hypothesis is 
the one-dimensional spin-; transverse X Y  model (TXYM [i]) at zero temperature. Its 
Hamiltonian is 

H = -r C -&qi + r ] )  (+:a:+l - q )  1 U;V:+~ (5.1) 
I i I 

where r is the transverse field, J is the exchange interaction, r ]  measures the anisotropy 
and ua (a = x, y ,  z )  are Pauli spin matrices. Note that H is invariant with respect to the 
interchange r ]  + -77, uX +ay, ay + -ax. For any / r ] (  > 0 the system becomes critical at 
gc= (r/J),= 1, with the same critical exponents as for the transverse Ising model 
(171 = 1) (Katsura 1962, Barouch and McCoy 1971, Suzuki 1971). For r) = 0, although 
there is no long-range order (Vaidya and Tracy 1978, Jullien and Pfeuty 1979) the 
longitudinal susceptibilities x X x  and x y y  as well as the correlation lengths related to the 
correlation functions ( O l a 6 a : I O )  and ( O ~ ~ & T Y I O )  are observed to diverge also at g,  = 1, 
but with exponents different from the anisotropic case (Barouch and McCoy 1971, 
Gerber and Beck 1977, Jullien and Pfeuty 1979). The fact that the critical line is then 
known in the thermodynamic limit to be g,(q)  = 1 is helpful in testing the effects of 
crossover in a TXYM 111 system of finite size. 

Before carrying out such a test we must first discuss the general features of the 
thermodynamic quantities used in our calculations. 

5.1. Low-lying energy gaps 

The nature of the low-lying excitation spectrum of the Hamiltonian (5.1) can be 
discussed qualitatively by following the lines of the perturbative approach used by 
Pfeuty and Elliott (1971) for the transverse Ising model. 

Consider first q = 1 and let us look at two limiting cases: Ising model (r = 0) and 
independent spins (J = 0). When r = 0 the ground state is doubly degenerate due to the 
discrete symmetry (a’ + --az), and the first excited state (corresponding to all spins to 
one side of the given spin being flipped) is N-fold degenerate, where N is the number of 
spins. When a small transverse field is switched on, the latter degeneracy is lifted, giving 
rise to a continuous band of excited states when N +03. On the other hand, when J = 0 
the ground state is a singlet, but the first excited state is also N-fold degenerate. Again, 
when a small Ising interaction is switched on, the degeneracy is lifted, giving rise for an 
infinite system, to a continuous band of excited states. At the critical point (r/J), there 
is then a change in the degeneracy of the ground state. Moreover, according to the 
results of Pfeuty (1970) and Pfeuty and Elliott (1971), the energy gap between the two 
lowest states vanishes as the critical point is approached both from above and below. 
Since the excited states form a continuum we can expect that the energy gap between 
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the ground and second excited states also vanishes at (I‘/J),. If we denote these two 
energy gaps mentioned above by A and d respectively, we may assume that for g ( = r / J )  
near g, we have 

A - Ig - gcIS (5.2) 
and 

- lg - g c l F  (5.3) 

where in principle the gap exponents s and s” are different. 
The above arguments can be equally applied to the low-lying spectrum for 0 < 77 < I ,  

and we expect the same behaviour as (5.2) and (5.3) with g, being replaced by g,(q). 
Moreover, for 77 = 0 a similar reasoning is also valid, with the proviso that for the low 
field phase the ground state has a continuous symmetry. We can also expect the gaps to 
behave as (5.2) and (5.3) but with g,, s and s” being replaced by g,(O), SO and sb, 
respectively. 

Moreover, the dynamical critical exponent (Hohenberg and Halperin 1977) at zero 
temperature is given by the ratio between the gap exponents (or so) and the correlation 
length exponent v (or vo), which is exactly the exponent of n in the FSS hypothesis. 
Within the EFSS approach, we are then able to investigate the crossover in the dynamic 
critical behaviour at zero temperature, by defining the dynamical exponent as 

z = s /u ,  2 0  = so/vo, (5.4) 

i = ;/v, i o  = so/vo. ( 5 . 5 )  

and extending this definition to the gap d as 

In figure 1 we show log-log plots of A and d at g = 1 for various values of q as a 
function of the size n of a chain with free ends. Note that as 77 goes from 0 to 1, the 

11 I 1 I 1 I I O l  

2 3 4 5 6 1 8 9 1 0  2 3 4 5 6 7 8 9 1 0  

n n 

Figure 1. Normalised energy gaps between the ground state and both the firs? ( a )  and the 
second (6)  excited states as functions of n at constant anisotropy q, for chains with free ends. 
The curves are labelled by the values of q. 
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exponents z and i as given by the slopes of the log-log plots go from -2 to -1. The 
crossover aspects are more easily seen if we use the successive estimates z , ( ~ )  and 2, (7) 
and i,(q) defined by (4.12) with X replaced by A and d, respectively, and gJ7) = 1. 

Thus, for very large n we can expect z,(O) + zo and z,(q) + z for 7 > 0, with 
analogous definitions for 2,. In figure 2 we plot z , (7)  and i,(~) as functions of l / n ,  in 
which the crossover effects are apparent from the bending over of the curves with 
7 = 0.2 and 0.4 as n increases. 

Figure 2. Asymptotic behaviour of the estimates for the dynamic exponents associated with 
the gaps in figure 1. The curves are labelled by the anisotropy 7 .  

Although the asymptotic behaviour is independent of the boundary conditions 
imposed, previous calculations on the transverse Ising model (dos Santos 1980) indicate 
that FSS estimates converge faster to the exact results when periodic conditions (PBC) are 
imposed than for a system with free ends. In the case of the TXYM [11, however, for the 
chain with PBC the ground state is degenerate at (g = 1 , q  = 0) for all n, as opposed to the 
free ends case where this degeneracy builds up only asymptotically. The degeneracy in 
the ground state actually occurs along the unit circle g 2  + q 2  = 1 for any finite size 
transverse X Y  chain with PBC. Since in this case the states can be classified according to 
a wavevector k ,  the ground state ( k  = 0 mode) must transform according to the k = 0 
mode of an operator which is a symmetry operation only for g 2  + q 2  = 1. For this reason 
we will refer to this degeneracy as ‘accidental’. Therefore, A,( l ,  O ) = O  so that we 
cannot detect z,(O) + 2 as n + CO as before. This fact is illustrated in figure 3(a)  where 
the curve corresponding to q = 0.1 has a small slope, whereas figure 3 ( b ) ,  correspond- 
ing to A, displays the same behaviour as for the chain with free ends. Again, the 
crossover effects are more pronounced by the bending over of the curves in figure 4. 

The results of the calculations with the energy gaps can then be summarised as 
follows (if one regards the behaviour of A, for the chain with PBC as 7 -+ 0 as being 
‘accidental’). 
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n n 

Figure 3. Normalised energy gaps between the ground state and both the first ( a )  and the 
second ( b )  excited states as functions of n at constant anisotropy, for chains with periodic 
boundary conditions. The curves are labelled by the values of 7. 

1 if q > 0, 
if q = O .  n+cc lim z , (q)  = ( (ii) (5.7) 

The equality between the exponent relative to the gaps A and d reflected by (5.6),  to 
our knowledge, had never been established, but the results for z agree with previous 
exact calculations for 0 < q 1 (Pfeuty 1970, Suzuki 1971, Barouch and McCoy 1971, 
Young 1975) and with RG calculations (Gerber and Beck 1977, Jullien and Pfeuty 
1979) for 77 = 0. 

5.2. Longitudinal susceptibilities xXx and x Y y  

The behaviour of the susceptibilities along the x and y directions in spin space should be 
quite analogous to that of the two correlation lengths discussed in § 3. Indeed, for 7 = 0 
the roles of rX and (+’ can be interchan,ged and thus xXx = xYY. For any finite amount of 
positive anisotropy, however, the y y  coupling becomes irrelevant (in the RG sense) so 
that xYy should not diverge at g , (q ) ,  whereas xxx should diverge with the same exponent 
as for the transverse Ising model. Analogously, for q < 0 xYY should diverge but not xxx. 

If one includes a field in the x y  plane, one should add 

to the Hamiltonian (5.1), so that at zero temperature the zero field susceptibilities for a 
system of N spins are defined by 

where p = x ,  y ,  and Eo(g, q, h”, h Y )  is the ground state energy. In the thermodynamic 
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2.0- 

- 
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1.6 
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1.5 

'.e 

1.4 

I 

1 In 

Figure 4. Asymptotic behaviour of the estimates for the dynamic exponents associated with 
the gaps in figure 3. The curves are labelled by the anisotropy I). 

limit we then expect for g near g , ( q ) ,  77 5 0 ,  
x""(g,  0 )  = x Y Y ( g ,  o ~ - / g - g c ( o ) l - y o ,  ( 5 . 1 0 )  

x""(g,  77)-Ig-gc(77)1-y, ( 5 . 1 1 )  

x Y Y ( g ,  77) -@(g ,  77), (5.12) 

where @ is a smooth and well behaved function of 77 > 0. This means that for a system of 
finite (but large) size n the EFSS hypothesis yields 

x " , " ~ ,  ~ ) = , y : ~ ( ~ , ~ ) = n ~ o ' ~ o  ( 5 . 1 3 )  

for 77 = 0, and 
x " , " ~ ,  n ) = n " " f l ( v )  ( 5 . 1 4 )  

(5 .25)  

for 77 > 0. Note that the absence of power law singularity in the thermodynamic limit is 
reflected by n independence in the FSS hypothesis, so we expect = 0. 
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Contrary to what happens for the energy gaps, the difference between the two 
limiting slopes of a log-log plot of xx* against n is not easily noticed: y / v  = 1.75 (Pfeuty 
1970) and yo/vo  = 2 (Gerber and Beck 1977). Thus, instead of a log-log plot of xxx 
against n, we show in figure 5 the successive estimates &(q) as defined by (4.12) for a 
chain with free ends, Following equations (4.13) and (4.14), we then expect 

(5.16) 

0.4 
0.6 
0.8 

1.0 

0 . 2  

0 

Figure 5. ( a )  Successive estimates of the ratio between the XX susceptibility and cor- 
relation length exponents as functions of 7, for chains with free ends, obtained from 
equation (4.12) with X = x X x  and er,,. The curves are labelled by n. ( b )  Asymptotic 
behaviour of these estimates for different values of the anisotropy q which labels the curves. 

Indeed, in figure 5 ( a )  the height and position of the maximum of &(q) seem to be 
converging towards the values 2 and 0, respectively. Figure 5 ( b )  displays the behaviour 
of these estimates as functions of ; /n .  Unfortunately, the sizes of the systems accessible 
numerically are not large enough to verify the bending over found for the gaps. 

The results for xLy  are shown in figure 6. We note from figure 6(a )  that as q 
increases from zero the curves tend to flatten down for large n, indicating the absence of 
power law singularity. As a guide to the limiting n behaviour, figure 6 ( b )  shows 
successive estimates of +/v as functions of l / n ,  where the bending over towards the 
value zero is already apparent from the curve corresponding to q = 0.1. 

For a chain with periodic boundary conditions, the effects of degeneracy are felt 
in the susceptibility as well. The calculations performed in this case indicate that 
xXx and x Y y  diverge even for a finite system as 17 + O ,  although 
lim,,o[x~Y1 (1, q)/xzcL(l, q)]= 1. Again all information about the isotropic limit is 
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10- 
9 -  
8 -  
1- 

b -  

- 
c 

1 I I 1  1 1 1 1 ,  

2 3 4 5 6 7 8 9 1 0  

0.6 - 

- 

0.2- 

n 
1 i n  

Figure 6.  ( a )  Normalised YY-susceptibility as a function of n at constant anisotropy 11, for 
chains with free ends. The curves are labelled by the values of 8. ( b )  Asymptotic behaviour 
of the corresponding slopes, according to equation (4.12) with X = x y y  and 3, (v) = r,, (8). 

lost because of this behaviour. Even so, one can detect a change in the behaviour as -7 is 
increased from 0, as shown in figures 7 ( a )  and 7(6). In particular, we note from figure 
7 ( a )  that the curves corresponding to 7 = 0.6,O.g and 1, respectively, are nearly parallel 
in the largest n region considered. Actual numbers for successive slopes can be 
extracted from figure 7 ( b ) ,  where the trend indicates quite neatly that all curves with 
7 2 0.2 tend to a common limit around 1.75, the exact result. 

The results for x Y y  for a chain with periodic boundary conditions are displayed in 
figure 8(a) ,  from which we notice the flattening down of the curve corresponding to 
7 ~ 0 . 4 ,  in agreement with the free ends case. The behaviour is also apparent from 
figure 8 ( b ) ,  where after an initial non-zero value for q, the values tend to zero as 77 
increases. 

Thus, if one again neglects the behaviour at 7 = 0 for a chain with PBC, the results for 
the susceptibility can be summarised as follows: 

lim (-y/v),  = 1.75, 
n-a? 

(ii) 
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Figure 7. ( a )  Normalised XX-susceptibility as a function of n at a constant anisotropy 1, for 
chains with periodic boundary conditions. The curves are labelled by the values of 7. ( b )  
Asymptotic behaviour of the corresponding slopes, according to equation (4.12), with 
X = x x *  and $ n ( 9 ) = T n ( q ) .  

lim ( ? / v ) ~  = 0, 
n + m  

(iii) 

where we have extended the notation from equation (5.16). This picture agrees with 
the exact results for y, v and vo (Pfeuty 1970, Barouch and McCoy 1971), and with 
approximate results for yo (Gerber and Beck 1977). 

As mentioned in P4, the ratio 4/v0 can be estimated in the same way as we 
calculated x/vo ,  but with X, replaced by its logarithmic derivative. As the energy levels 
are even functions of 77 (due to the symmetry of the Hamiltonian), we have to use the 
susceptibility to calculate 4/v0, the results of which are shown in table 1.  

As vo = f, and the above results seem to indicate that limn+m ( 4 / v o )  = 1, we obtain 
4 = i. This is consistent with the conclusions of a careful analysis (to be published) of 
the results of Barouch and McCoy (1971). 

As a final test of these ideas we show in figure 9 log-log plots both of n A,, ( g  = 1, 77) 
and of n-’.’’~?(g = 1 , q )  as functions of 77. As expected, for small 7 the curves do not 
superpose, but for 77 > 0.4 the universal character is quite apparent. Moreover, from 
the behaviour near 77 = 1 we infer that the 77 dependence is given by a power law 

(5.17) 

Calculations with A9 yield A = 1.02, whereas calculations with x 8  yield A = -0.76. 

n -x’vx, ( 1, 7 ) - 7) ,4. 
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Figure 8. ( a )  Normalised YY-susceptibility a a function of n at constant anisotropy q, for 
chains with periodic boundary conditions. The curves are labelled by the value of q. ( b )  
Asymptotic behaviour of the corresponding slopes, according to equation (4.12), with 
X = x Y Y  and $"(q)=f,,(q). 

Table 1. Successive estimates ( ~ J / Y o ) "  = l n [ Y ~ ( l ) / Y " - ~ ( l ) ] / l n ( n / n  - 1) where Yn(l )  = 
@/a7 in ,y,,[gc(q)]v=o} for the chain with free ends. 

6 1.20 
7 1.14 
8 1.13 

6 .  Discussion and conclusion 

The extension of the FSS hypothesis (Fisher 1971) to treat crossover phenomena was 
achieved with the introduction of a second scaling variable, the choice of which was 
dictated by requiring certain consistency conditions to be satisfied, as discussed in 9 4. 
As the set of scaling variables should reflect the competition between two distinct 
critical behaviours, one could, in principle, use the ratio between the two correlation 
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Figure 9. Universal plots of the scaled energy gap An ( a )  and scaled XX-susceptibility xR 
( b )  as in equation (4.10), as functions of 7, for chains with periodic boundary conditions. The 
curves are labelled by the size of the chains. 

lengths. This possibility, however, would not allow us to modify the n exponent, which 
would imply x o / u o  = x / u  which is not always true. Another comment with respect to 
the choice of scaling variables concerns the actual rounding of the critical line. As 
mentioned in § 2 in connection with the usual FSS hypothesis, the inhibition of the 
critical behaviour relative to the infinite system is due to the correlation length being of 
the order of the size of the system. In this sense one could scale (Fisher 1971) with the 
correlation length being measured from the distance to a critical or pseudo-critical line 
(if the system is infinite in one or more dimensions, or if it is totally finite, respectively). 
The extension to crossover phenomena can follow along the same lines, by defining a 
critical (or pseudo-critical) line gc(n;  77). 

As a final comment, we note that FSS is limited by its inability to calculate all critical 
properties of interest. Firstly, the critical point (or critical curve) must be given rather 
accurately. Secondly, the information about critical exponents that we obtain is always 
as a ratio between the exponent associated with the quantity used and the correlation 
length exponent. In principle, one could overcome the first limitation by using a 
quantity with a rounded off singularity for systems of finite size. That is, instead of being 
a monotonic function it displays maxima along a pseudo-critical line gc(n ; q )  which, for 
large n, should be a reasonable estimate &(q) for the limiting curve g c ( q ) ,  We could 
then use &(q)  to obtain the exponent ratios as outlined at the end of § 4 .  We can 
overcome the second limitation if we obtain FSS estimates from two quantities with 
exponents linked by a scaling law. We could then have an extra equation, so that each 
exponent could be calculated independently. 

Away from the crossover region, there is another way of overcoming these 
difficulties which is the so-called finite size rescaling transformation (dos Santos and 
Sneddon 1981). Within this scheme, which is close in spirit to the usual renormalisation 
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group, a fixed point of the transformation is found, and linearisation around it yields the 
correlation length exponent. With the aid of the EFSS hypothesis we can now pursue 
ways of removing the restriction concerning the validity of the finite size rescaling 
transformation around the crossover region. 
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